Genetic code supports targeted insertion of two amino acids by one codon.

نویسندگان

  • Anton A Turanov
  • Alexey V Lobanov
  • Dmitri E Fomenko
  • Hilary G Morrison
  • Mitchell L Sogin
  • Lawrence A Klobutcher
  • Dolph L Hatfield
  • Vadim N Gladyshev
چکیده

Strict one-to-one correspondence between codons and amino acids is thought to be an essential feature of the genetic code. However, we report that one codon can code for two different amino acids with the choice of the inserted amino acid determined by a specific 3' untranslated region structure and location of the dual-function codon within the messenger RNA (mRNA). We found that the codon UGA specifies insertion of selenocysteine and cysteine in the ciliate Euplotes crassus, that the dual use of this codon can occur even within the same gene, and that the structural arrangements of Euplotes mRNA preserve location-dependent dual function of UGA when expressed in mammalian cells. Thus, the genetic code supports the use of one codon to code for multiple amino acids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Future of the Genetic Code

The methods for establishing synthetic lifeforms with rewritten genetic codes comprising non-canonical amino acids (NCAA) in addition to canonical amino acids (CAA) include proteome-wide replacement of CAA, insertion through suppression of nonsense codon, and insertion via the pyrrolysine and selenocysteine pathways. Proteome-wide reassignments of nonsense codons and sense codons are also under...

متن کامل

Application of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids

Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...

متن کامل

Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.

The genetic code is established by the aminoacylation reactions of tRNA synthetases. Its accuracy depends on editing reactions that prevent amino acids from being assigned to incorrect codons. A group of class I synthetases share a common insertion that encodes a distinct site for editing that is about 30 A from the active site. Both misactivated aminoacyl adenylates and mischarged amino acids ...

متن کامل

Recoding the genetic code with selenocysteine.

Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenop...

متن کامل

On the Hypercube Structure of the Genetic Code

A representation of the genetic code as a six–dimensional Boolean hypercube is proposed. It is assumed here that this structure is the result of the hierarchical order of the interaction energies of the bases in codon–anticodon recognition. The proposed structure demonstrates that in the genetic code there is a balance between conservatism and innovation. Comparing aligned positions in homologo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 323 5911  شماره 

صفحات  -

تاریخ انتشار 2009